El teorema del coseno es una generalización del teorema de Pitágoras en los triángulos rectángulos que se utiliza, normalmente, en trigonometría.
El teorema relaciona un lado de un triángulo cualquiera con los otros dos y con el coseno del ángulo formado por estos dos lados:
Demostraciones
Notemos que el Teorema de Cosenos es equivalente al Teorema de Pitágoras cuando el ángulo
Primer caso: c es adyacente a dos ángulos agudos.
Consideremos la figura adjunta. Por el teorema de Pitágoras, la longitud c es calculada así:
Pero, la longitud h también se calcula así:
Sumando ambas ecuaciones y luego simplificando obtenemos:
Por la definición de coseno, se tiene:
y por lo tanto:
Sustituimos el valor de u en la ecuación para
con lo que concluye la prueba del primer caso.
Segundo caso: c es adyacente a un ángulo obtuso.
Consideremos la figura adjunta. El teorema de Pitágoras establece nuevamente
De la definición de coseno, se tiene
Sustituimos en la expresión para c² y simplificamos c² = a²-b² -2b(a cos(γ)-b), concluyendo nuevamente
Esto concluye la demostración.
Es importante notar, que si se considera a u como un segmento dirigido, entonces sólo hay un caso y las dos demostraciones se convierten en la misma.
Ejemplo:
|
No hay comentarios:
Publicar un comentario